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Abstract. We present a scheme for stochastic quantum-state diffusion (QSD) with adaptive noise to cal-
culate the time evolution of an arbitrary observable of an open system. The method is based on the fact
that the observable is much less sensitive to adaptive noise than to noise with a random phase. Hence,
the individual realisations of the expectation value of the observable stay closer to the average evolution
and fewer realisations are required to obtain the ensemble average. This is illustrated by applying QSD
to a driven two-level system using both randomly phased and adaptive noise. Applying QSD with adap-
tive noise to an undriven two-level system enables us to derive a deterministic Schrödinger equation that
produces the exact evolution of an arbitrary observable.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 32.80.−t Photon interac-
tions with atoms

1 Introduction

When studying open systems, the loss of information from
the system to the outside world requires the use of a den-
sity matrix ρ(t) for the state of the system. Usually the
system can be described by a quantum master equation
of the general form [1]

d

dt
ρ(t) = −

i

~
[H, ρ(t)]

−
1

2

∑
k

[c†kckρ(t) + ρ(t)c†kck − 2ckρ(t)c†k]

= −
i

~
[Heff ρ(t)− ρ(t)H†eff] +

∑
k

ckρ(t)c†k , (1)

where H is the Hamilton operator for the closed sys-
tem. The Lindblad operator ck represents the coupling
to the outside world through the kth open channel [2] and

Heff = H − i~/2
∑
k c
†
kck is an effective, non-hermitian

Hamiltonian. The effect of Heff is in Liouville form and
does not mix an initially pure state. The last term of
equation (1) cannot be written in Liouville form and it
requires the use of a density matrix to describe a mixed
state of the system.

In this article we focus on the evolution of observables
of the system, rather than the internal state of the sys-
tem itself. The expectation value 〈A〉 = trρ(t)A of any
observable A obeys the differential equation

d

dt
〈A〉 =

i

~
〈H†effA−A Heff〉+

∑
k

〈c†kAck〉 . (2)
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This is generally not a closed equation and equation (1)
must be solved after all.

As an alternative to equation (1) one can use a
quantum-trajectory method, which requires only state
vectors to be evaluated [3–5]. These quantum-trajectory
techniques mainly fall into two classes, which are termed
the quantum-jump method and the quantum state-
diffusion method. The trajectory methods simulate the
continuous observation of the information leaking out of
the open channels. The information that is thus retrieved
causes the system to remain pure by continuous wavefunc-
tion collapse. The outcome of the fictitious measurement
is however random and one should average over all possi-
ble outcomes. This can still be numerically advantageous if
the number of dimensions of the state vector, which should
be squared for a density matrix, outweighs the number of
trajectories that need to be averaged for a satisfactory
result.

There are (infinitely) many ways to perform the ficti-
tious measurement. Each one leads to a different ensem-
ble with different properties for the individual trajectories.
Naturally, the ensemble average is the same for all these
methods. In practice, however, one cannot take the aver-
age over the entire, infinite ensemble. It would therefore be
beneficial if the individual trajectories are as close to the
average as possible so that few realisations are required to
obtain an adequate result.

2 Linear QSD equation

We will start out from the linear quantum state-diffusion
(QSD) method [6], which we briefly summarise. For sim-
plicity we assume the system to start in a pure state,
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ρ(0) = |ψ0〉〈ψ0|. An ensemble of pure state trajectories
is generated with the following linear stochastic differen-
tial equation,

d|ψ(t)〉 = −
i

~
Heff|ψ(t)〉dt +

∑
k

ck|ψ(t)〉dξk(t) . (3)

Each trajectory starts in the same initial state |ψ0〉. The
first term in equation (3) is deterministic. The second term
contains the stochastic increments dξk(t), one for each
open channel. Because of this term each trajectory will
randomly differ from the other trajectories. We assume
the stochastic increments dξk(t) to have the properties

dξk(t) dξ∗k′(t) = δk,k′dt and dξk(t) = 0 (4)

and

|ψ(t)〉〈ψ(t)| dξk(t) = 0 and

|ψ(t)〉〈ψ(t)| dξk(t) dξ∗k′(t) = |ψ(t)〉〈ψ(t)| δk,k′dt , (5)

where the overline notation indicates an ensemble average.
The requirement (5) basically means that dξk(t) should be
statistically independent from |ψ(t)〉 to a certain degree.
The conditions (4) and (5) are sufficient to ensure that

|ψ(t)〉〈ψ(t)| = ρ(t) (6)

for all t ≥ 0. Note that the individual trajectories generally
do not remain normalised.

Instead of simulating ρ(t) to obtain the evolution
〈A(t)〉 = trρ(t)A of an observable A, one can also
calculate the ensemble average over single realisations
〈A(t)〉c, i.e.

〈A(t)〉 = 〈A(t)〉c . (7)

In order to simulate the expectation value 〈A〉, the single
realisations 〈A〉c should be calculated with respect to the
unnormalised state vector,

〈A(t)〉c = 〈ψ(t)|A|ψ(t)〉 . (8)

The subscript ‘c’ indicates that the expectation value is
conditioned to a single realisation ξk(t) of the noise. Using
equation (3) we find for the stochastic differential of a
single realisation 〈A〉c, up to first order in dt,

d〈A〉c =
i

~
〈H†effA−A Heff〉cdt+

∑
k

〈c†kAck〉c |dξk(t)|2

+
∑
k

[〈Ack〉c dξk(t) + 〈c†kA〉c dξ
∗
k(t)]

+
∑
k 6=k′

〈c†k′Ack〉c dξk(t) dξ∗k′(t) . (9)

In equation (9) we had to evaluate the differential up to
second order in dξk(t) in order to obtain the result up to
first order in dt. This can be seen from equation (4). Of
course, when the requirements (4) and (5) are fulfilled,

the ensemble average of equation (9) coincides with equa-
tion (2). On the other hand, due to the presence of the
linear terms in dξk(t) and dξ∗k(t), a single realisation will
usually produce sharp noise and the first time derivative of
〈A(t)〉c does not exist. Since this noise will smooth out in
the ensemble average, the single realisations will deviate
appreciably from the average. For numerical simulations
it is advantageous if the individual realisations are already
close to the average. As we shall demonstrate in the sub-
sequent section, this can be accomplished by choosing ap-
propriate statistics for ξk(t).

3 Adaptive noise

The first two terms on the right-hand side of equation (9)
contribute to the average evolution (2); the other terms
vanish when averaged. In the special case that |dξk(t)|2 =
dt for each individual trajectory, the first two terms in
equation (9) alone would already reproduce the differential
equation (2). This would be accomplished by the choice

dξk(t) =
√
dt eiαk(t) , (10)

with αk(t) a stochastic phase. In order that condition (4)
is fulfilled, αk(t) must obey

eiαk(t) = 0 . (11)

Usually one considers either randomly phased complex
noise, with αk(t) uniformly distributed between 0 and 2π,
or real noise, with αk(t) attaining the values 0 and π with
equal probability. However, the requirement (11) allows
for other distributions. In any case dξk(t) represents a ran-
dom walk with infinitesimal step size. The different prob-
ability distributions for the stochastic increments can be
viewed to correspond to different measurement schemes.

We consider only true observables A, which are
represented by hermitian operators. Then the identity

|〈Ack〉c| = |〈c†kA〉c| holds. With the choice (10) for dξk,
the third term on the r.h.s. of equation (9) can be made
to vanish by choosing αk in such a way that

〈Ack〉c e
iαk(t) + 〈c†kA〉c e

−iαk(t) = 0 . (12)

In fact, this equation (12) is valid for two opposite phases
αk of the complex noise, which we specify by the two dis-
tinct values ϕk(t) and ϕk(t) + π. Figure 1 schematically
show these two solutions to equation (12). In order that
condition (11) remains satisfied we give these two values
the same probability 1/2. This means that we select a
special ensemble, specified by

dξk(t) = i
〈c†kA〉c

|〈c†kA〉c|
dξ′k(t) and dξ′k(t) = ±

√
dt ,

(13)

where the sign of dξ′k(t) is chosen randomly with equal
probability 1/2 for either sign. Although the real stochas-
tic increments dξ′k(t) do not depend on the state of the
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Fig. 1. Schematic construction of the adaptive phase ϕk of the
stochastic increment dξk. ϕk is chosen in such a way that dξk
is “perpendicular” to 〈c†kA〉c in the complex plane.

system, the actual complex increments ξk(t) do depend
on |ψ(t)〉. Nevertheless, the conditions (4) and (5) are ob-
viously fulfilled so that the ensemble still reproduces the
master equation (1). The noise specified by dξk according
to equation (13) can be termed phase-adaptive noise.

The definition (13) is not defined when the denomi-
nator vanishes. However, this imposes no restriction since
for such instants the third term in equation (9) will vanish
regardless the choice of the phase angle αk.

The resulting stochastic differential equation for the
state vector |ψ(t)〉 takes the form

d|ψ(t)〉 = −
i

~
Heff|ψ(t)〉dt + i

∑
k

〈c†kA〉c

|〈c†kA〉c|
ck|ψ(t)〉dξ′k(t) .

(14)

This stochastic equation, with dξ′k(t) = ±
√
dt, specifies

the QSD equation with phase-adaptive noise. The trajec-
tories generated by this equation are continuous, but they
do not have a first time derivative. The realisations 〈A〉c,
on the other hand, do have a first time derivative, i.e. they
are smooth. The fluctuations only appear as higher order
noise. We postpone the discussion on the interpretation of
equation (14) to Section 6.

We like to note that similar results can be obtained
starting with certain non-linear QSD equations such as the
equation originally proposed in reference [4]. However, the
considerations just presented are much more transparent
starting with the linear QSD equation. Moreover, some
of the non-linear methods require dξk(t)2 = 0, which is
violated by the adaptive noise. Therefore such methods
cannot easily serve as a starting point for the derivation
of an equation with adaptive noise.

The original, nonlinear, QSD equation has the advan-
tage that each individual trajectory remains normalised.
This ensures that each realisation 〈A〉c stays within
the physically interpretable range. The nonlinear QSD
equation, which can be derived directly from the phys-
ical measurement scheme of homodyne detection [7], is

given by [4]

d|ψ(t)〉 =
(
−
i

~
Heff + 〈c†k〉cck −

1
2 〈c
†
k〉c〈ck〉c

)
|ψ(t)〉dt

+
∑
k

(
ck − 〈ck〉c

)
|ψ(t)〉dξk(t) . (15)

Using the same considerations as for the linear equation,
we derive for the adaptive noise

dξk(t) = i
〈c†kA〉c − 〈c

†
k〉c〈A〉c

|〈c†kA〉c − 〈c
†
k〉c〈A〉c|

dξ′k(t) . (16)

As before, this noise does not affect the realisation 〈A〉c
to first order in dξk(t).

4 Driven two-level system

As a demonstration of QSD with adaptive noise we apply
it to a well known configuration and compare the results
with those obtained using randomly phased noise. As a
model system we take the driven two-level atom. All in-
teractions can be written in terms of the unit operator
and the three components of the spin-vector operator S.
These we define in the standard way as

Sx = 1
2 (S + S†) ,

Sy = 1
2 i(S − S

†) and

Sz = 1
2 (S†S − SS†) , (17)

where the lowering operator

S = |g〉〈e| (18)

simply transfers the excited state |e〉 to the ground state
|g〉. The system has only one open channel, the decay from
the excited state to the ground state with a rate Γ . We
describe the density matrix with respect to a frame ro-
tating with frequency ω of the driving field. The resulting
master equation is

d

dt
ρ(t) = −

i

~
[Heffρ(t)− ρ(t)H†eff] + ΓSρ(t)S† , (19)

with the effective Hamiltonian

Heff = −~∆Sz − ~ΩSx − i~
Γ

2
S†S , (20)

where ∆ = ω−ω0 is the detuning of the driving frequency
with respect to the atomic transition frequency and Ω is
the Rabi frequency. As the initial state of the system we
choose the excited state, so ρ(0) = |e〉〈e|. The system, as
it evolves according to equation (19), undergoes a Rabi
oscillation between the excited and the ground state be-
cause of the driving field, while the decaying terms try to
relax the system to the ground state. As a result of the
latter the system ends up in a mixed steady-state. The
final excitation depends on the parameters ∆, Γ and Ω.
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Fig. 2. Typical realisations (solid curves) of the inversion
2〈Sz〉c plotted as a function of the scaled time Γt (upper graph)
using randomly phased noise and (lower graph) using adaptive
noise. The parameters are ∆ = 1

3
Ω = Γ . The dashed curves

show the exact average evolution 2〈Sz〉, obtained by direct in-
tegration of equation (19).

The dashed curves in Figure 2 show the time evolution
of the inversion, which is simply 2〈Sz〉, for a particular
choice of the parameters.

The nonlinear QSD-evolution is given by (15)

d|ψ(t)〉 =
(
−
i

~
Heff + Γ 〈S†〉cS −

1
2Γ 〈S

†〉c〈S〉c
)
|ψ(t)〉dt

+
√
Γ
(
S − 〈S〉c

)
|ψ(t)〉dξ(t) (21)

with |ψ(0)〉 = |e〉. First we will choose randomly phased
noise. Every individual trajectory will essentially display
the same behaviour as the average evolution does. How-
ever, since the trajectories remain in a pure state, there
will be no relaxation to a steady state, which has to be a
mixed state due to the incoherent decay channel. Because
of the noise, which accumulates in time, the Rabi oscilla-
tions of the trajectories will dephase with respect to each
other. Of course, a full ensemble average will yield results
identical to those obtained with the master equation. The
upper graph of Figure 2 shows a typical single realisation
of the inversion using randomly phased noise. The indi-
vidual realisations are not smooth, i.e. they do not have
a first time derivative.
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Fig. 3. Ensemble averages over 100 realisations of the inversion
2〈Sz〉c plotted as a function of the scaled time Γt (upper graph)
using randomly phased noise and (lower graph) using adaptive
noise. The parameters are ∆ = 1

3
Ω = Γ . The dashed curves

show the exact average evolution 2〈Sz〉, obtained by direct
integration of equation (19).

Now we will apply adaptive noise with respect to the
observable Sz,

dξ(t) = i
〈S†Sz〉c − 〈S†〉c〈Sz〉c
|〈S†Sz〉c − 〈S†〉c〈Sz〉c|

dξ′(t) . (22)

The lower graph of Figure 2 shows a typical single realisa-
tion of the inversion using this adaptive noise. This time
each of the realisations is smooth. As a result, the realisa-
tions stay closer to the average than the realisations based
on randomly phased noise. This is illustrated in Figure 3
where the average over 100 realisations is plotted for both
types of noise together with the exact result. Clearly, the
adaptive-noise method displays a better convergence.

The first time derivative of the realisation 〈A〉c, given
by equation (9), using adaptive noise is only equal to the
average 〈A〉, given by equation (2), when the state of the
system is pure, i.e. when ρ = |ψ〉〈ψ|. Assuming that this is
the case at time t = 0, the slope of 〈A〉c coincides with the
average initially, but not at later times when the individ-
ual trajectory |ψ〉 no longer represents the average state.
An alternative way to understand the deviation from the
average at later times is the fact that the higher-order
time derivatives of 〈A〉c are not equal to the average; the
noise does contribute to higher-order differentials such as
d(d〈A〉c), even for adaptive noise. This is the reason for
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labelling the resulting noise in 〈A〉c “higher order” noise.
The effect of adaptive noise is more like a drift; the devi-
ation from the average takes place on a longer time scale
than in the case of true diffusion due to randomly phased
noise.

Only when the higher order noise terms disappear as
well is the realisation 〈A〉c identical to the average 〈A〉.
This is the case, for example, when A = 1. The use of
adapting to the expectation value 〈1〉 is mainly that it
shows that for A = 1 the prescription (14) produces nor-
malised trajectories. A more interesting example is studied
in the next section.

5 Undriven two-level system

Now we present the results of adaptive noise applied to
the undriven two-level system. This system is described
by the same equation (19) as the driven system, but with
Ω = ∆ = 0. The resulting master equation is

d

dt
ρ(t) = −

Γ

2
[S†Sρ(t) + ρ(t)S†S − 2Sρ(t)S†] . (23)

The linear QSD equation using adaptive noise with respect
to an observable A is given by (3)

d|ψ(t)〉 = −
Γ

2
S†S|ψ(t)〉dt+ i

√
Γ
〈S†A〉c
|〈S†A〉c|

S|ψ(t)〉dξ′(t) .

(24)

As before, the lowest-order noise in 〈A〉c is zero because
of the adaptive noise. In this — very special — case, how-
ever, there are no higher order noise contributions to 〈A〉c
either. This is due to the fact that

S†S† = SS = 0 (25)

for two-level systems and that there is no driving field to
re-excite the population transferred to the ground state by
the stochastic evolution. The realisation 〈A〉c is therefore
entirely deterministic and the same for every individual
trajectory. Since we are generating an ensemble that re-
produces the correct average results, each realisation is
identical to the ensemble average,

〈A〉 = 〈A〉c . (26)

We can therefore choose an arbitrary — even non-
stochastic — realisation for dξ′(t). It is convenient to
choose “alternating noise”, i.e. the sign of the noise in
equation (24) at any instant is opposite to the sign at the
previous time step. Evaluating the differential d|ψ(t)〉 up

to second order in
√
dt, using once a minus and once a

plus sign, makes the first order terms in
√
dt cancel. Up

to first order in dt we obtain

d

dt
|ψA(t)〉 = −

Γ

2

(
S†S −

〈S†AS〉c
〈AS〉c

S

)
|ψA(t)〉 . (27)

Here we have written |ψA〉 instead of |ψ〉 since only the
expectation value for the observable A is correct. Equa-
tion (27) no longer generates an ensemble. It is a non-
linear, Schrödinger-type equation for a state vector that
gives exactly the same evolution for 〈A〉 as the den-
sity matrix does. This means that only a single state-
vector evolution has to be calculated for this open sys-
tem that can otherwise only be described by a density
matrix or an ensemble of stochastic state-vector trajecto-
ries. Note that in general |ψA〉 is not normalised, but still
〈ψA|A|ψA〉 ≡ 〈A〉c = 〈A〉 is exact.

One point that deserves attention is the denominator
in equation (27). Of course it results directly from the de-
nominator in equation (13). In Section 3 this was resolved
by simply selecting a random phase in the special case
that the denominator is zero. In the deterministic equa-
tion (27) this is not an option. The denominator is zero
when the atom is either in the ground or in the excited
state. When the atom is in the ground state, the singu-
lar term simply vanishes because the action of S on |g〉
is already zero. In the excited state, the singularity can
be interpreted as an indication of a symmetric instability.
Symmetry breaking by quantum noise is essential in this
case. There is no deterministic way to prescribe the di-
rection in which the dipole moment should topple over in
order for the atom to decay.

6 Discussion

Although is might seem that equation (14) is a different
QSD equation than equation (3), it is in fact a special im-
plementation of the latter. The adaptive noise utilises the
freedom in the choice of the actual realisation per trajec-
tory of the noise, which only has to fulfil the statistical
requirements of equation (4). Only the properties of the
noise are altered compared with conventional methods.
Otherwise, the evolutionary equation that generates the
trajectories remains the same.

Existing diffusion methods can be equipped with adap-
tive noise to improve the numerical efficiency. This has
been illustrated with the simple example of a driven two-
level atom in Section 4. However, the method is generally
applicable. Recently, we have applied the adaptive noise
method to a more complex system of practical importance
[8]. In that article we studied the final temperature of an
atom beam, both confined and cooled by laser light in the
transverse direction. Using adaptive noise only 20 trajec-
tories were required to obtain a useful average, which is
approximately 20 times more efficient than conventional
methods based on randomly or fixed phased noise.

Besides the numerical advantages, the adaptive noise
method can provide analytical results that cannot be ob-
tained directly using conventional methods. We have illus-
trated this in Section 5, where a deterministic expression
was found for a single trajectory that produces the exact
average result. In earlier work we have used this to find an-
alytical expressions for the time evolution of observables
of less trivial systems [9]. Furthermore, the special case
where the adaptive noise is undetermined indicates the
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existence of critical points, where the symmetry breaking
due to quantum noise is essential.

Finally we would like to address the physical measure-
ment scheme that would lead to adaptive noise. For an
overview of several quantum trajectory methods and their
corresponding measurement schemes see reference [10]. As
a starting point for this discussion we take the nonlinear
QSD method of equation (15). This method results from
a homodyne mixing scheme, where the output from the
system is mixed with a strong classical oscillator of which
the phase is fixed. The noise in one of the quadrature
components resulting from the mixing leads to real Gaus-
sian white noise for ξ(t). The effects of a time dependent
phase of the oscillator were studied in [11]. Adaptive noise
can be seen as resulting from an infinitely fast feedback of
the measurement outcomes on this oscillator phase. The
feedback device knows the present state of the system and
precalculates the effect on the observable of interest for all
possible oscillator phases and measurement outcomes. It
then adjusts the oscillator phase so that the effect of any
possible noise measurement is minimal. The next measure-
ment outcome again results in a well known state and a
new feedback cycle is started.

One should realise that the measurement is performed
on the output field and not on the system itself. The
actually measured observable of the output field will
fluctuate as a result of the measurement. However, a
complementary observable will not be influenced since no
information about it is retrieved. One could simply state
that a measured observable will fluctuate due to the mea-
surement and a complementary observable will not. The
output field is of course generated by the system and there

is a (nontrivial) connection between the system and the
output field observables. If we want to efficiently calculate
the system observable A, as we did in this article, then the
measurement should be performed on the field observable
complementary to the field observable that corresponds to
A. Descriptively one could say: in order to calculate A, one
should not measure A. On the other hand, prerequisite for
the system to be described by a pure state as a result of
continuous wavecollapse is a measurement, but it should
not be performed on A. The adaptive noise method is in
fact an implementation of this principle.
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